قالب وردپرس درنا توس
Home / Tips and Tricks / Coronavirus vaccines: the drugs under development to treat COVID-19

Coronavirus vaccines: the drugs under development to treat COVID-19



  gettyimages-144560269

Everything you need to know about COVID-19 vaccines.


Tetra / Getty

Visit the WHO website for the latest news and information on the coronavirus pandemic.

COVID-19, the potentially fatal respiratory disease first discovered in December 2019, has spread around the world, causing the cancellation of major events postponing sports seasons and many forced into suicide. imposed quarantine and self-isolation. Health authorities and governments are trying to flatten the curve to mitigate community spread, while scientists and biotech companies are turning their attention to the coronavirus causing the disease: SARS-CoV-2

Since it was first discovered as the causative agent of the new disease, scientists have been racing to better understand the genetic makeup of the virus, how it infects the cells and how to treat it effectively . There is no cure, and medical specialists can only treat the symptoms of the disease. Many different treatment options have been suggested, and some older drugs seem to be associated with positive outcomes – but much more work is needed. However, the long-term strategy to combat COVID-19, which has spread to every continent on Earth alongside Antarctica, is to develop a vaccine.

The development of new vaccines takes time, and they must be rigorously tested and safely confirmed through clinical trials before they can be used routinely in humans. Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases in the US, has often stated that a vaccine is at least a year to 18 months away. Experts agree that there is still a way to go.

Vaccines are incredibly important in the fight against disease. Vaccine development has allowed us to prevent a handful of viral diseases for decades. Yet there is confusion and inconvenience about their usefulness. This guide explains what vaccines are, why they are so important, and how scientists will use them to fight the corona virus. It also discusses the current treatment options used and which are promising in hospitals.

As more candidates appear and are tested we will add them to this list, so bookmark this page and come back for the latest updates. [19659007] You can jump to any segment by clicking the links below:

What is a vaccine?

A vaccine is a type of treatment that aims to stimulate the body's immune system to fight against infectious pathogens. , such as bacteria and viruses. They are, according to the World Health Organization, "one of the most effective ways to prevent disease."

The human body is particularly resilient to disease in that it has developed a natural defense system against pesky pathogenic microorganisms such as bacteria and viruses. . The immune system – our immune system – consists of different types of white blood cells that can detect and destroy foreign invaders. Some gobble up bacteria, some produce antibodies that can tell the body what to destroy and get the germs out, and other cells remember what the invaders look like so that the body can respond quickly when they invade again.


Now playing: [19659017] Watch this:

Coronavirus lock: why social distance saves lives



5:41

Vaccines are a really smart fake. They make the body think that it is infected, so that it stimulates this immune response. For example, the measles vaccine makes the body think it has measles. When you are vaccinated against measles, your body generates a record of the measles virus. If you come into contact with it in the future, the body's immune system is ready and ready to beat it back before you can get sick.

The very first vaccine was developed by a scientist named Edward Jenner in the late 18th century. In a famous experiment, Jenner scraped pus from a milkmaid with cowpox – a type of virus that primarily causes disease in cows and is very similar to the smallpox virus – and introduced the pus to a young boy. The boy became a little ill and had a mild form of cowpox. Later, Jenner inoculated the boy with smallpox, but he did not get sick. Jenner's first injection of cowpox pus trained the boy's body to recognize the cowpox virus and because it is so similar to smallpox, the young man was able to fight it and not get sick.

Vaccines have come an incredibly long way since 1796. Scientists certainly do not inject pus from patients into other patients, and vaccines must meet strict safety requirements, multiple clinical testing rounds, and strict government guidelines before they can be adopted for widespread use.

What is in a vaccine?

Vaccines contain a handful of different ingredients depending on their type and how they want to generate an immune response. However, they all have an agreement.

The main ingredient is the antigen. This is the part of the vaccine that the body can recognize as foreign. Depending on the type of vaccine, an antigen can be molecules of viruses such as a DNA strand or a protein. It could instead be weakened versions of live viruses. For example, the measles vaccine contains a weakened version of the measles virus. When a patient receives the measles vaccine, their immune system recognizes and learns to fight a protein present on the measles virus.

A second important ingredient is the adjuvant. An adjuvant works to enhance the immune response to an antigen. Whether a vaccine contains an adjuvant depends on the type of vaccine it is.

Some vaccines used to be kept in reusable bottles and as such contained preservatives that allowed them to sit on a shelf without growing other pesky bacteria. One such preservative is thimerosal, which has received much attention because it contains traces of easily removable ethyl mercury. According to the CDC, it has not been shown to be harmful in vaccines. In places like Australia, single-use vials are now common and therefore preservatives like thimerosal are no longer needed in most vaccines.

When developing a vaccine for SARS-CoV-2, scientists must find a viable antigen that will stimulate the body's immune system to defend against infection.

Making a COVID-19 vaccine

The mid-outbreak pathogen, SARS-CoV-2, belongs to the family of viruses known as coronaviruses. This family is so named because they appear under a microscope with crown-like projections on their surface.

When developing a vaccine that targets SARS-CoV-2, scientists are looking closely at these projections. The projections allow the virus to enter human cells where it can multiply and make copies of itself. They are known as "spike proteins" or "S" proteins. Researchers have been able to map the projections in 3D and research suggests that they could be a viable antigen in any coronavirus vaccine.

That's because the S protein is common in coronaviruses that we have battled in the past – including the protein that caused the SARS outbreak in China in 2002-03. This has given researchers an edge in building vaccines against some of the S protein, and using animal models, they have shown that they can generate an immune response.

There are many companies around the world working on a SARS-CoV-2 vaccine, developing different ways to boost the immune system. Some of the most discussed approaches are those using a relatively new type of vaccine known as a "nucleic acid vaccine". These vaccines are essentially programmable and contain a small piece of genetic code to act as an antigen.

Biotech companies such as Moderna have been able to rapidly generate new vaccine designs against SARS-CoV-2 by taking a piece of the genetic code for the S protein and fusing it with fatty nanoparticles that can be injected into the body . Imperial College London is designing a similar vaccine using coronavirus RNA – the genetic code. Pennsylvania biotech company Inovio generates strands of DNA that it hopes will stimulate an immune response. While these types of vaccines can be made quickly, none have yet been put on the market.

Johnson & Johnson and the French pharmaceutical giant Sanofi both work with the US Biomedical Advanced Research and Development Authority to develop their own vaccines. Sanofi's plan is to mix the coronavirus DNA with genetic material from a harmless virus, while Johnson & Johnson will attempt to deactivate SARS-CoV-2, essentially disabling the ability to cause disease and causing it to still stimulates the immune system.

Some Research Organizations, such as Boston Children's Hospital, are investigating different types of adjuvants that help enhance the immune response. According to the Harvard Gazette, this approach will be more focused on the elderly, who do not respond as effectively to vaccination. We hope that by studying adjuvants to stimulate a vaccine, the elderly can be vaccinated with a mix of ingredients that would enhance their immunity.

When will there be a vaccine?

Fauci, of the Institute for Infectious Diseases, states that a vaccine is about a year and a half away, although we will likely have human trials within the next month or two. According to a 60-minute interview with Fauci in March, this is a quick turnaround.

"The good news is that we did it faster than ever before," Fauci told 60 minutes. (Note: 60 minutes and CNET share a common parent company, ViacomCBS.) "The sobering news is that it's not ready for prime time for what we're going through right now."

Why is vaccine production taking so long? It involves many steps and many regulatory hurdles to jump through.

"To be able to sell any drug, it must undergo the standard clinical trial process, including Phase 1 [to] 3 trials," said Bruce Thompson, health counselor at Swinburne University in Australia. "We need to make sure the drug is safe, can do no harm and know how effective it is."

Scientists cannot assume that their vaccine design will work alone – they must test, test and retest. They have to recruit thousands of people to ensure the safety of a vaccine and how useful it will be. The process can be divided into six stages:

  • Vaccine design: scientists study a pathogen and decide how they will get the immune system to recognize it.
  • Animal Studies: A new vaccine has been tested in animal models for disease to demonstrate that it works and has no extreme adverse effects.
  • Clinical Trials (Phase I): These represent the first tests in humans and test the safety, dose and side effects of a vaccine. These studies enroll only a small cohort of patients.
  • Clinical Trials (Phase II): This is a deeper analysis of how the drug or vaccine works biologically. It encompasses a larger cohort of patients and assesses the physiological responses and interactions with the treatment. For example, a coronavirus study can assess whether a vaccine stimulates the immune system in a particular way.
  • Clinical Studies (Phase III): In the final phase of studies, an even larger number of people are tested over a long period of time.
  • Legal Approval: The final hurdle is that regulatory agencies, such as the U.S. Food and Drug Administration, the European Medicines Agency, and Australia's Therapeutic Goods Administration, review available evidence from experiments and trials and conclude whether a vaccine should be are given the all-clear as a treatment option.

Traditionally, therefore, it can take a decade or more for a new vaccine to go from design to approval. In addition, once regulatory processes have concluded that a vaccine is safe, pharmaceutical companies must overdrive production so that they can produce enough of the vaccine to boost immunity in the wider population.

With SARS-CoV-2, the process is accelerated in some cases. As STATnews reports, the vaccine under development by Moderna has passed from design directly to phase I clinical trials of the mRNA vaccine, skipping tests in animal models. Those tests will take place at the Kaiser Permanente Washington Health Institute in Seattle and patients are now enrolled.

First US COVID-19 Vaccine Trials in Humans

In the US, Moderna's modern Phase I clinical trials began on March 16 in collaboration with NIAID, the US National Institutes of Health and KPWHRI. It is the first human test for the mRNA vaccine and a total of 45 healthy adult volunteers between the ages of 18 and 55 will be enrolled.

"This phase 1 study, which started at record speed, is an important first step towards achieving that goal," Fauci said in a statement.

Moderna & # 39; s approach, explained in the Vaccines section above, is particularly unique in its speed. . Because the biotech company was already researching ways to tackle the coronavirus that causes respiratory syndrome in the Middle East, they were able to adapt their methodology and vaccine design for SARS-CoV-2. The experimental vaccine, called mRNA-1273, contains genetic material from the spike protein contained in SARS-CoV-2 embedded in a lipid nanoparticle.

Production costs were supported by the Coalition for the Epidemic Preparedness Innovations.

The trial will have patients receive two injections of the mRNA-1273 28 days apart. The 45 patients are divided into three groups of 15 and are given different doses: 25 micrograms, 100 micrograms or 250 micrograms. Safety assessments will be made after the first four patients have received the lowest and middle doses and again before all patients receive their injection. Another safety assessment of the data will be performed before injecting the 15 patients seeking the highest dose.

Even if the vaccine has been proven to be safe and promising as protection against COVID-19, it can still take a year – at least.

You can visit the NIAID website for all information about the trial.

How do you treat COVID-19?

The best way to prevent disease is to avoid exposure. Those tips are below.

First, antibiotics, drugs designed to fight bacteria, don't work on SARS-CoV-2, a virus. If you are infected, you will be asked to isolate yourself for 14 days to prevent further spread of the disease. If symptoms escalate and you experience shortness of breath, high fever and lethargy, get medical attention.

The treatment of hospital cases of COVID-19 is based on the most appropriate management of the patient's symptoms. For patients with severe disease affecting the lungs, doctors place a tube in the airway so that they can be connected to ventilators – machines that help control breathing.

There are no specific treatments for COVID-19 yet, although a number are in the works, including experimental antivirals, which can attack the virus, and existing drugs targeting other viruses such as HIV, which have shown some promise in the treatment of COVID-19

Remdesivir

Remdesivir, an experimental antiviral drug made by biotech company Gilead Sciences, has garnered much of the spotlight. The drug has been used in the US, China and Italy, but only on & # 39; compassionate base & # 39; – In essence, this drug has not received approval, but it can be used outside of a clinical trial in critically ill patients. Remdesivir is not specifically designed to destroy SARS-CoV-2. Instead, it works by disabling a specific piece of machine in the virus, known as "RNA polymerase," which many viruses use to replicate. It has been shown to be effective in human cells and mouse models in the past.

Its effectiveness is still being debated, and much more rigorous study will be needed before it becomes a general treatment for SARS-CoV-2, if at all .

Gilead, the manufacturer received "orphan status" for remdesivir on March 23, which is usually reserved for the development of drugs for the diagnosis or treatment of "rare diseases or conditions" affecting less than 200,000 people. The rating gives Gilead a number of incentives, including tax breaks and expensive fee waivers, and is intended to accelerate the development process. It also prevents other generic competitors from selling the drug. However, on March 25, Gilead asked for status to be revoked after a significant backlash from public and presidential candidate, Bernie Sanders.

Favipiravir

Chinese scientists in the Guardian reported encouraging clinical trials in Wuhan and Shenzhen on March 18 involving more than 300 patients of the Japanese flu drug favipiravir. The drug seemed to shorten the course of the disease, in patients who received treatment to remove the virus after just four days, while those who did not needed about 11 days.

The drug is manufactured by Fujifilm Toyama Chemical, but the company declines to comment on the allegations. Favipiravir, also known as Avigan, is an antiviral and is designed to target RNA viruses, including coronaviruses and influenza viruses. The drug is thought to disrupt a pathway that helps these viruses to replicate in cells. According to the Guardian, a source within the Japanese Ministry of Health suggests the drug is not effective in patients with severe symptoms.

Other Treatment Options

An HIV drug, Kaletra / Aluvia, has been used in China to treat COVID-19. According to a publication by AbbVie, an Illinois-based pharmaceutical company, the treatment was offered as an experimental option for Chinese patients during "the first days" of fighting the virus. The company suggests it works with global health authorities, including the Centers for Disease Control and Prevention and the World Health Organization.

On March 18, a randomized, controlled study assessed the effectiveness of the HIV drug. The results, published in the New England Journal of Medicine, show that adults with severe COVID-19 infections do not appear to benefit from the drug treatment and that there was no clinical improvement from standard care. The authors note that additional studies need to be done because treatment can reduce serious complications – such as acute kidney injury or secondary infections – if given at some stage of the disease.

The Problem with Chloroquine

A drug containing Chloroquine, which has been used to treat malaria for about 70 years, has been identified as a potential candidate for treatment. It seems to be able to prevent viruses from binding to human cells and getting into them to multiply. It also stimulates the immune system. A letter to the editor in the journal Nature on February 4 showed that chloroquine was effective in fighting SARS-CoV-2. A Chinese study from Guangdong reports that chloroquine improved patient outcomes and could improve treatment success rate. and & # 39; would shorten the hospital stay & # 39 ;.

Tesla and CEO of SpaceX Elon Musk and US President Donald Trump have both touted chloroquine as a potential candidate for treatment. A more recent correspondence in the journal Nature, on March 18, suggests that hydroxychloroquine – a less toxic derivative of the drug – is effective in inhibiting SARS-CoV-2 infection. That derivative is widely available for the treatment of diseases such as rheumatoid arthritis, and Chinese researchers have conducted at least seven clinical trials of hydroxychloroquine to treat infections.

Combining hydroxychloroquine with the antibiotic azithromycin has also been associated with positive outcomes for the patient. Physicians in Marseille, France, conducted a low-power study in a small number of patients (36) and suggested that the combination treatment could be effective in reducing the amount of virus found on a particular body part. The study is widely cited and even the President of the US suggested it could be a "game changer" . Whether this results in better clinical outcomes – that is. as patients recover faster – debates continue.

"The results are disputed and the clinical studies are inconclusive," said Gaeten Burgio, a medical researcher at Australian National University. "To date, there is no clear evidence that chloroquine or hydroxychloroquine is a treatment option. Additional clinical studies will tell us whether hydroxychloroquine or chloroquine are viable options for COVID-19 treatments."

Burgio does not recommend storing hydroxychloroquine because the drug is critical for the treatment of patients with the autoimmune disease Lupus.

Food and Drug Administration Commissioner Stephen Hahn discussed the studies of chloroquine during a White House briefing on March 19. "That is a drug the President has instructed us to investigate further if an extended use approach could be taken to see if it benefits patients," said Hahn. Trump announced that the FDA on March 19 approved chloroquine for use based on & # 39; compassionate use & # 39 ;.

There is another problem with the use of chloroquine.

Chloroquine phosphate, which is widely available, does not its side effects and health officials warn against self-medication.It can cause headache, diarrhea, rash, itching and muscle problems.It is also used as an additive in aquarium cleaner.In rare cases, it seems to strongly affect the heart muscle and can lead to abnormalities or heart failure. in Nigeria have reported cases of chloroquine poisoning and on March 23, a man in his sixties and his wife became seriously ill after self-medicating e with chloroquinephosphate from an aquarium cleaner. The man later died, and his wife was placed in intensive care.

Recovering Plasma Therapy

On March 24 the US FDA announced that it would provide access to "recovering plasma" for patients with severe or immediately life-threatening COVID-19 infections. In this form of therapy, a fraction of the blood from recovered COVID-19 patients is introduced into the body of sick patients.

As we explained above, the immune system is the body's defensive power. When a virus invades, it sends out an army of cells, including white blood cells, to fight it. Those cells release antibodies – which linger in the liquid part of the blood – known as "plasma". If a patient survives COVID-19, they likely have built up a huge supply of antibodies in their plasma. The idea is to take some of their supplies and bring them into seriously ill patients, hoping that the antibodies stimulate the patient's immune system to find and destroy the virus.

This is not the first time such therapy would be used – previous outbreaks of SARS, MERS and the H1N1 flu pandemic all saw the use of recovering plasma to treat patients. In fact, the use of recovering plasma dates back to the 1918 flu pandemic.

A report by Chinese scientists, published in the journal The Lancet Infectious Diseases in February, suggested that the treatment option could be viable in the fight against SARS-CoV. 2 and anecdotal evidence from China has shown some success, with 91 out of 245 patients in a trial showing improvement, according to Xinhua.

In the US, Governor Andrew Cuomo announced that New York doctors are going to test restorative plasma therapy in a trial starting late March.

How can you protect yourself against coronavirus now?

It is not a good idea to rely on a vaccine to stop the spread of coronavirus because it is many months away. The best way to stop the spread at this time is to continue to practice good personal hygiene and to limit interaction with others. "The best thing to do is the simple things like hand washing and hand disinfection," said Thompson.

This outbreak is unprecedented and changing behavior is absolutely essential to stop the spread.

There are a large number of resources available from the WHO to protect yourself from infection. It is clear that the virus can spread from person to person and that transmission has taken place in communities around the world. Protection boils down to a few important things:

  • Washing hands: for 20 seconds and no less! Here you can get some useful hand washing tips .
  • Keeping Social Distance: Try to keep at least 1 meter away from anyone who coughs or sneezes.
  • Do not touch your face, eyes or mouth: An incredibly difficult task, but this is how the virus initially enters the body.
  • Hygiene measures for the respiratory system: Coughing and sneezing in your elbow.
  • If you have visited a location where COVID-19 spreads and then isolates itself for 14 days.

For much more information, you can go to CNET's guide

. Originally published in March and continuously updated as new information becomes available.


Source link